Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy

نویسنده

  • Philippe du Jardin
چکیده

We evaluate the prediction accuracy of models designed using different classification methods depending on the technique used to select variables, and we study the relationship between the structure of the models and their ability to correctly predict financial failure. We show that a neural network based model using a set of variables selected with a criterion that it is adapted to the network leads to better results than a set chosen with criteria used in the financial literature. We also show that the way in which a set of variables may represent the financial profiles of healthy companies plays a role in Type I error reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection Method Affects SVM Approach in Bankruptcy Prediction

This paper examined bankruptcy predictive accuracy of five statistics models-discriminant analysis logistic regression, probit regression, neural networks, support vector machine (SVM), and genetic-based SVM (GA-SVM) that influenced by variable selection. Empirical results indicate that the SVM-based models are very promising models for predicting financial failure, in terms of both best predic...

متن کامل

A Heuristic Model for Predicting Bankruptcy

Bankruptcy prediction is one of the major business classification problems. The main purpose of this study is to investigate Kohonen self-organizing feature map in term of performance accuracy in the area of bankruptcy prediction.  A sample of 108 firms listed in Tehran Stock Exchange is used for the study. Our results confirm that Kohonen network is a robust model for predicting bankruptcy in ...

متن کامل

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2010